Das Periodensystem der Elemente

auf unterschiedlichen Darstellungsebenen

von Heinz Schmidkunz und Sjaeful Anwar

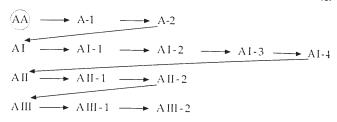
Das Periodensystem als Informationsund Orientierungsquelle

Following the field of didactic reductions devised by Grüner a step-wise vertical and horizontal didactic reduction of the periodic system is shown.

There are 14 steps of decreasing complexity. Special attention is given to the vertical and horizontal grading.

Die universelle Bedeutung des Periodensystems ist wohl allen Chemielehrkräften geläufig. Die 90 in der Natur vorkommenden Elemente (wenn man einmal von den äußerst kurzlebenden Astat und Technetium absieht) werden mit einigen künstlich hergestellten Elementen in eine Struktur gebracht, die

Gemeinsamkeiten, Ähnlichkeiten, Unterschiede und periodisch sich ändernden Eigenschaften erkennen lassen. Diesen Sachverhalten hat die Zeitschrift mit der Herausgabe eines eigenen Themenheftes zum Periodensystem Rechnung getragen [1].


Bei den Chemiedidaktikern gibt es keine einheitliche Meinung, in welcher Jahrgangsstufe bzw. mit welchen fachlichen Voraussetzungen, das Periodensystem in den Unterricht eingeführt werden sollte. Ebenso bleibt offen, mit welchen "Inhalten" das erfolgen sollte. Zustimmung findet jedoch die Forderung, daß zunächst einmal eine gewisse Stoffkenntnis vorhanden sein müsse, bevor das System entwickelt wird. Anders ausgedrückt heißt das, daß den Lernenden eine beachtliche Zahl an Elementen bekannt sein müßte. Vielfach wird die Meinung vertreten, daß dies am Ende eines Chemiekurses geschehen sollte. Bezogen auf die Sekundarstufe I wäre das im 10. Schuljahr. Gesicherte empirische Untersuchungen liegen dafür noch nicht vor. Außerdem wäre dann zu prüfen, mit welcher didaktischen Reduktionsstufe eine Einführung des Periodensystems erfolgen könnte.

Das PSE im Reduktionsfeld nach Grüner

Das Periodensystem soll nun in einigen didaktischen Reduktionsstufen aufgezeigt werden. Um die Vielfalt der Reduktionsmöglichkeiten anzudeuten, wird eine Einordnung in das von Grüner (siehe Basisartikel) erstellte Reduktionsfeld vorgenommen. Die hier aufgeführten Beispiele sind von den Autoren frei gewählt worden und auch die Zuordnung der Beispiele zum Reduktionsfeld nach Grüner erfolgt nach Einschätzung der Autoren, weil es für die einzelnen Reduktionsstufen grundsätzlich keine genormten Beispiele gibt. Die Beliebigkeit dieser Vorgehensweise hat den Vorteil, daß die Wahl eines geeigneten PSE immer flexibel bleibt und den jeweiligen pädagogischen Bedürfnissen angepaßt werden kann. Besonders optimal wirkt sich dieses Prinzip aus, wenn die Lehrkraft die Entwicklung des PSE für ihren Chemiekurs frühzeitig plant und mit "aufsteigenden" Reduktionsstufen genetisch in verschiedenen Jahrgangsstufen betreibt und mehrmals aufgreift.

Um sich in dem hier entwickelten Reduktionsfeld schnell zurechtfinden zu können, sei das Feld mit seinen Stufen und der Gang durch das Feld zur Orientierung aufgezeigt. Die Reihenfolge der Reduktionsbeispiele wird durch Pfeile angedeutet. Die Nomenklatur ist ebenfalls den Ausführungen von *Grüner* entnommen.

Es sei noch erwähnt, daß der Reduktionsvorgang auch nach dem Vorschlag von *Hering* gewählt werden könnte.

AA, die Ausgangsaussage

Die Ausgangsaussage ist dadurch charakterisiert, daß eine Vielzahl von atomaren Fakten den Elementen im PSE zu entnehmen ist. Aus Platz- und Lesegründen sind die Daten häufig nicht in einem einzigen System unterzubringen, so daß man die Informationen auf zwei Blätter verteilen muß. Solche Systeme sind unhandlich und für den Schulgebrauch ist eine solche Zusammenstellung der Daten zum großen Teil überflüssig. In der *Abbildung 1* ist für das Element Eisen die Zahlenvielfalt als exemplarisches Beispiel aufgeführt. Natürlich sind in einem solchen System alle bekannten Elemente mit Lanthaniden und Aktiniden zu finden.

Abb. 1: Element mit vielen Daten

AA-I, die erste horizontale didaktische Reduktion der Ausgangsaussage

Die hohe Komplexität der Ausgangsaussage wird etwas vermindert. Neben dem Elementsymbol und dem Elementnamen werden die Ordnungszahl (Protonenzahl), die relative Atommasse, die Siede- und Schmelztemperatur, die Elektronegativität und die Elektronenkonfiguration aufgeführt. Das Prinzip von AA bleibt erhalten.

Für das Element Mangan wird diese Zusammenstellung der Daten in *Abbildung 2* gezeigt. Die Abnahme der Komplexität gegenüber des bei AA aufgeführten Elements "Eisen" wird deutlich.

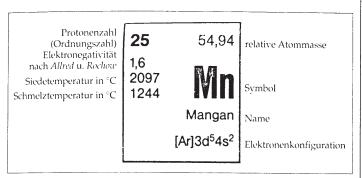


Abb. 2: Element mit vielen, gegenüber AA verminderten Daten

AA-2, die zweite horizontale didaktische Reduktion der Ausgangsaussage

Die Anzahl der Daten für die einzelnen Elemente bleibt zwar erhalten, aber durch eine farbliche Unterlegung werden Elementgruppen mit ähnlichen Eigenschaften markiert. So sind die Hauptgruppen mit rot bzw. rosa gekenn-

zeichnet und die Nebengruppen erhielten eine blaue Farbe. Die Metalle in den Hauptgruppen sind rot und die Nichtmetalle rosa unterlegt. Eine Unterscheidung zu Halbleitern wird allerdings nicht vollzogen. Das System wird als *Abbildung 3* (siehe *4. Umschlagseite*) dargeboten.

Es sind natürlich noch weitere Reduktionen zur Ausgangsaussage möglich. Bei besonderen Bedarf kann ein spezieller, gewünschter Datensatz den Elementen beigegeben werden.

Al, die erste vertikale didaktische Reduktionsstufe

Im Mittelpunkt dieser Stufe stehen die Elemente selbst. Neben dem Elementsymbol sind lediglich die Ordnungszahlen und die relativen (mittleren) atomaren Massen aufgeführt. Auffallend ist, daß die Elementnamen hier fehlen. Die Lernenden könnten selbst die Namen ergänzen. Das System ist als *Kopiervorlage* (siehe S. 16) dem Artikel beigefügt.

Al-1, die erste horizontale Reduktion der ersten vertikalen

Zusätzlich zu der in AI präsentierten Form erscheinen jetzt die Elementnamen. Die Lesbarkeit wird dadurch vor allem für Anfänger erhöht. Nebengruppenelemente, sowie Lanthaniden und Aktiniden sind hier noch enthalten. In *Abbildung 4* ist ein solches System zu sehen.

Al-2, die zweite horizontale Reduktion der ersten vertikalen Um die Einordnung der Lanthaniden und Aktiniden zu verdeutlichen, wird eine räumliche Struktur vorgeschlagen, wie sie in *Abbildung 5*, Seite 17, angedeutet wird.

Ein solches System könnte in gemeinsamer Projektarbeit erstellt werden. Eine projektorientierte Unterrichtseinheit zu auf unserer Erde vorkommenden Elementen bietet sich an.

1,008 H Wasser- stoff Ua 6,533 4 9,012 Li Be othium Beyllium	Ordn	nungszał		54,98 Min ongon	Atom Symb Name		20	hien des	merte W stabils en Isoto	ten oder	am bes Illa	iten IVa	Va 7 14,007 N Stick- stoff	VI a 6 15,999 O Scuer- stoff	VII a 9 18,958 F Fluor	VIIIa 2 4,003 He Helium 15 20,183 Ne Heon	Das Per
11 22, 990 12 24,312 Na Mg katium Magne- sium	îii b	175	VЪ	VIb	VIIb		VIII b —		16	IJЬ	Al	14 28,066 Si Silicium	Р	16 32,054 S Schwefel	17 35,453 CI Chlor	18 39,948 Ar Argon	Periodensystem
	Sc Scandium	Ti Titan	V Vanctur	Cr	25 54,54 M n Mangan	Fe Eisen	Co Kobalt	Ni Nickel	Cu Kupfer	Zn Zink	Ga Gallium	Ge Bermo- num	As Arsen	34 78,98 Se Selen	Br Brom	3E E3,60 Kr Krypton	systen
37 85,47 38 87,62 Rb Sr Rubidium Strontium	Y	40 51,77 Zr Zirkon	Nb .	42 95,94 Mo Molybošn	Tc	Ru	Rh	46 108,4 Pd Palladium	Αq	48 112,40 Cd Cadmium	l In	50 118,69 Sn Zinn	51 121,75 S.b Antimon	52 127,60 Te Tellur	53 126,90 Tod	54 131,30 Xe Xenon	n der
55 132,91 56 137,34 Cs Ba Casium Banum	57 136,51 La Lanthar	72 178,49 Hf Hafnium	Ta	74 183,85 W Wolfram	75 188,2 Re Rhenium	0s	77 192,2 Ir Iridium	76 195,1 Pt Platin	79 195,97 Au Gold	60 200,59 Hg Queossiber	Τι	E2 207,2 Pb Biei	Bi	B4 (210) Po Polonium	85 (210) At Astot	85 (222) Rn Rodon	Elemente
7 (223) 88 (226) Fr Ra Francium Radium		184 (2£1) Ku / Rf			107	108	109										ente
# Kurtschotzmum oder Rutherfordium			Ce	59 140,91 Pr Praseodym	60 164,24 Nd Neodym	61 (147) Pm Prome- thium	62 150,35 S.m. Somori-	Eu	Gd GdGoli-	65156,93 Tb Terbium	66 162,50 Dy Dyspro-	67 164,53 Ho Holmium	68167,26 Er Erbium	69 168,93 Trn Thulium	70 173,04 Y b Ytterbium	Lu	
Melsborum			90 232 04 Th Thorium	91 (231) Pa Protocti-	U	93 (237) Np Keptunium	Pu	Am	Cm	S7 (249) Bk Berkelium	98 (252) Cf	Es	Fm	101 (258) Md Mendelevi- um	No	Lr	

riert werden. Die dreispaltige Nebengruppe (Fe, Ru, Os), (Co, Rh, Ir), (Ni, Pd, Pt) hat danach die Zahlen 8, 9 und 10.

Abb. 4: Das Element steht im Mittelpunkt; nur wenige Daten sind beigefügt

Die Edelgase erhalten die Zahl 18.

Periodensystem der Elemente

Elementsymbol, Ordnungszahl und relative Atommasse (Atomgewicht)

1A "Europäische" Gruppenzeichnung und alte IUPAC-Empehlung
 neuer Vorschlag der IUPAC 1986
 1A "Amerikanische" Gruppenbezeichung, verwendet vom Chemical Abstracts Service bis 1986

≤	26	ره.	28	ē	48	<u> </u>	2	5	29	9	0.02	*	1	
0 18 VIIIA	4.0026	2He	20.180	10Ne	39.948	18Ar	83.80	36Kr	131.29	мХе	222.02	86Rn *		
	78	VIIA	18.998	Ā	35.453	יַ ק	79.904	35Br	126.90	Icc	209.99	85At*		
	6B	VIA	15.9994	Õ	32.066	Š	78.96	3.Ce	127.60	s2Te	208.98	84Po*		
	5B	C Y	14.007	Ž	30.974	15P	74.922	33As	121.75	SiSb	208.98	s3Bi		
	4B	IVA IVA	12.011	ပွ	28.086	iSi	72.61	32 G e	118.71	»Sn	207.2	82Pb		
	3B	H.A	10.811	sВ	26.982	ısAl	69.723	31 Ga	114.82	49In	204.38	Пів		
					2B	18	65.39	30 Zn	112.41	4ªCd	200.59	80Hg		
9					113	13	63.546	29Cu	107.87	47Ag	196.97	19Au		
C-Empeniung vom Chemical Abstracts Service bis 1986					∞ ⊊	VIII	58.69	28Ni	106.42	PA%	195.08	78Pt		
racts Serv					∞ 0	VIII	58.933	27Co	102.91	45Rh	192.22	η Ir		
lung nical Abst					∞ ∝	VIII	55.847	26Fe	101.07	4Ru	190.2	309v		
vom Cher					7A 7	VIIB	54.938	25Mn	98.906	43Tc*	186.21	15Re		
aite 10 <i>PA</i> verwendet					49	VIB	51.996	24 Cr	95.94	42M0	183.85	WM.		
nung und 1986 zeichung,					5A 5	VB	50.942	Λtτ	92.906	41Nb	180.95	лТа		
ppenzeich r IUPAC iruppenbe					4 4	IVB	47.88	27Ti	91.224	40Zr	178.49	1Ht		
schlag der		1			34	IIIB	44.956	21Sc	88.906	39.Y			•	
1	2A	IIA	9.0122	4Be	24.305	ızMg	40.078	20 Ca	87.62	38Sr	137.33	56 Ba	226.03	88Ra *
≼	1.0079	H.	6.941	iĽ	22.990	aN:	39.098	19K	85.468	37Rb	132.91	ssCs	223.02	87Fr*
										1			L	

138.91	138.91 140.12 140.91	140.91	144.24	146.92 150.36 151.97 157.25 158.93 162.50 164.93 167.26 168.93 173.04 174.97	150.36	151.97	157.25	158.93	162.50	164.93	167.26	168.93	173.04	174.97
s7La	38Ce 59Pr	59 Pr	PN09	60Nd 61Pm* 62Sm	62Sm	63Eu	PS ¹⁹	sTb	%Dy	67H0	«Er	esTm 70Yb	70 X b	"Lu
227.03	227.03 232.04 231.04	231.04	238.03	237.05	244.06	243.06	237.05 244.06 243.06 247.07	247.07	247.07 251.08 252.08	252.08		258.10	257.10 258.10 259.10	260.11
89AC*	89Ac* wTh* 91Pa*	91Pa*	*U*	* dNte	94Pu *	95Am*	91Np* 94Pu* 95Am* 96Cm* 97Bk* 98Cf* 98Es* 100Fm* 101Md* 102No* 103Lr*	97Bk *	*1286	%Es*	100Fm *	* PW101	* 0N201	103Lr *

* radioaktive Elemente; angegeben ist die Masse eines wichtigen Isotops

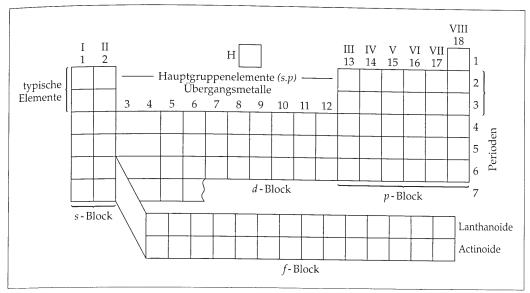


Abb. 5: Eine räumliche Struktur zur Einordnung der Lanthaniden und Aktiniden

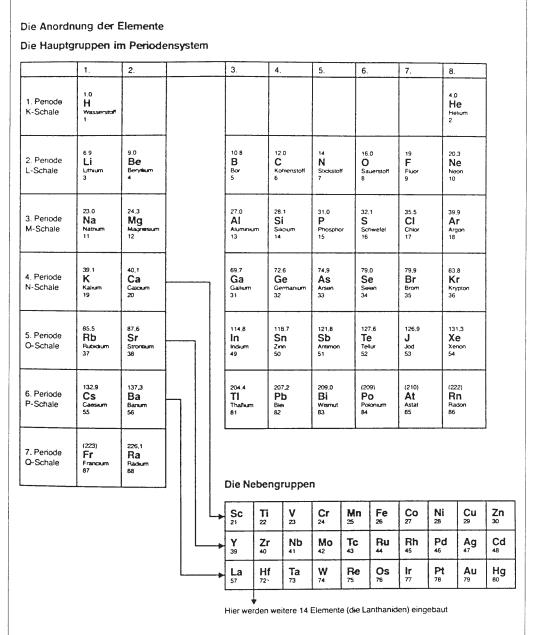


Abb. 6: PSE mit Haupt- und Nebengruppen

Al-3, die dritte horizontale Reduktion der ersten vertikalen

Es gibt ein PSE, das neben dem Elementsymbol und der Ordnungszahl auch noch das jeweilige Element selbst in bildhafter Darstellung zeigt, bzw. es werden typische Anwendungsbeispiele aufgeführt [2].

Al-4, die vierte horizontale Reduktion der ersten vertikalen

Inzwischen gibt es für den Computer zum interaktiven Lernen eine Reihe von brauchbaren Programmen auf Disketten für den Unterricht. Auf ein ausgereiftes und vielseitiges Programm sei in diesem Zusammenhang hingewiesen [3]. Eigenschaften, Verwendung, Geschichte u. a. m. kann man durch Mausklick abrufen.

All, zweite vertikale didaktische Reduktionsstufe

Das gemeinsame Prinzip dieser Stufe liegt darin, daß die Lanthaniden und Aktiniden nicht mehr aufgeführt werden. Die Übergangselemente bleiben jedoch erhalten, denn dazu gehören eine Reihe wichtiger und den Lernenden bekannter Metalle. In Abbildung 6 ist ein solches System zu sehen.

All-1, erste horizontale Reduktion der zweiten vertikalen

In dieser Stufe geht es vor allem um eine Veranschaulichung spezieller Fakten. So z. B. kann das Atomvolumen in cm³ pro mol in Form von Kreisen symbolartig dargestellt werden (Abb. 7). Ebenso werden die Bildungsenthalpie-Werte wichtiger Oxide in der gleichen Form veranschaulicht. Die Größe der Kreise gibt die Größe der entsprechenden Werte wieder (Abb. 8). Beide Graphiken sind der englischen "Nuffield Foundation" entnommen.

All-2, zweite horizontale Reduktion der zweiten vertikalen

Als weiteres Beispiel mag die Markierung der biologisch

Atomic volumes of the elements/ cm³ mol-1 0 Н Не 31.8 14.1 C N 0 F 2 В Ne Be Li 17.3 17.1 4.3 5.4 14.0 16.8 4.9 13.0 0 **3** . 3 P Si S CI Αl Ar Na Mg 10.0 11.6 16.9 15.5 18.7 24.2 23.7 14.0 • 9 0 . 0 **(7)** (\cdot) 3 Br Ni Cu Zn Ga Ge As Se Kr Co Ti ٧ Cr Mn Fe Ca Sc 13.1 16.5 25.6 32.2 7.1 9.2 11.8 13.3 26.0 14.7 10.6 8.9 7.3 7.4 7.1 6.6 6.6 44.9 **(3**) 0 0 • • 5 Sb Te Cd Sn 1 Xe Pd In Ru Rh Αg Sr Υ Zr Nb Мо Tc 25.6 15.8 18.2 20.4 42.9 8.3 8.8 10.3 13.0 16.4 34.0 16.1 14.2 10.9 9.4 8.1 ✐ 0 • Pt Pb Bi Po Αt Ba Hf Ta W Re 0s lr Αu Hg ΤI Rn La 21.4 39.2 22.6 13.5 10.9 9.6 8.9 8.5 8.6 9.1 10.2 14.8 17.2 18.3 50.5

Abb. 7: Atomvolumen in anschaulicher Darstellung (entnommen: "Nuffield Foundation")

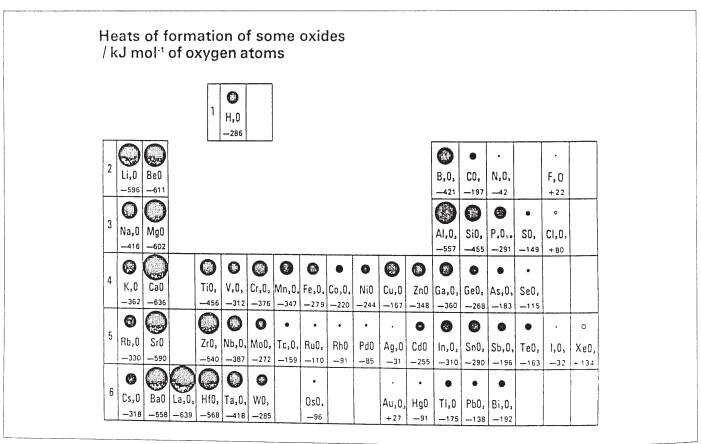


Abb. 8: Bildungsenthalpien der Elemnet-Oxid-Bildung (entnommen: "Nuffield Foundation")

n									I									0
1									\bigcirc H									Не
	I a	II a	III b	IV b	Vъ	VI b	VII b	VIII			Ιb	Пb	III a	IV a	V a	Vla	VII a	0
2	Li	Ве											В	(C)	N	0	F	Ne
3	Na	Mg											Al	Si	Р	S	Cl	Aı
4	K	Ca	Sc	Ti	v	Cr	Mn	Fe	/co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
5	Rb	Sr	Y	Zr	Nb	Mo	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	I	Хє
6	Cs	Ва	La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Ро	At	Rı
7	Fr	Ra	Ac	Ku	Ns	<u></u>	-		nente fü mente (Spuren	elemen	te	
	: Elemer	ıte für d	as Leber	1		_	1,100	Genere	incinc (,111111010	iistorie,				or			

Abb. 9: Elemente für das Leben

wichtigen Elemente im PSE dienen, wie es in dem genannten Themenheft der NiU-Chemie publiziert wurde [4]. In der Abbildung 9 ist diese Darstellung wiedergegeben.

AIII, die dritte vertikale didaktische Reduktionsstufe

Die Struktur des Periodensystems wird jetzt völlig aufgelöst. Die einzelnen Elemente können z. B. nach zunehmender Kernladungszahl geordnet werden. Es könnte auch die Rolle der atomaren Massen im Vergleich zu den Ordnungszahlen diskutiert werden. Auf eine entsprechende Abbildung wird hier verzichtet. Die einzelnen Elemente könnten auch mit ihren Elektronenkonfigurationen aufge-

AllI-1, die erste horizontale Reduktion der dritten vertikalen

In der Reihe der Elemente, die nach zunehmender Ordnungszahl aufgereiht wurden, werden nun Elemente mit ähnlichen Eigenschaften miteinander in Beziehung gesetzt. In einer solchen Reihe verändern sich die Eigenschaften kontinuierlich. Jedes achte Element hat Ahnlichkeit mit dem ersten Element. Dieser Sachverhalt wird in der Abbildung 10 dargestellt.

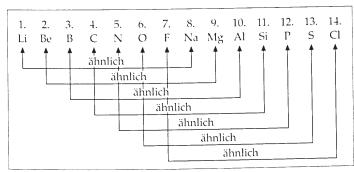


Abb. 10: Element-Ähnlichkeiten

Die ähnlichen Eigenschaften lassen sich mit gemeinsamen chemischen Reaktionen verdeutlichen.

4 Li + O, →	2 Li ₂ O	H ₂ +	$F_2 \longrightarrow$	2 HF
$4 \text{ Na} + O_2 \longrightarrow$	-	H ₂ +	$Cl_2 \longrightarrow$	2 HCl

AIII-2, die zweite horizontale Reduktion der dritten vertikalen

Für die bekannten Elemente könnten "Steckbriefe" mit den wichtigsten Daten erstellt werden. Hier wird auf eine Publikation zurückgegriffen, in der diese Vorgehensweise sehr anschaulich demonstriert wird [5]. Beispielhaft sei hier ein solcher Steckbrief für das Element Natrium aufgeführt:

Natrium Element: Atomsymbol: Na 22,98 Rel. Atommasse: Metall/Nichtmetall: Metall 0,97 g/cm³ Dichte: Feststoff Aggregatzustand: Na₂O

Oxid: leicht lösl., Lauge Lösung in Wasser:

Ausgehend von solchen Steckbriefen könnte man die Triaden-Regel nach Döbereiner erarbeiten. Damit würde auch ein interessanter historischer Aspekt einbezogen.

[1] Häusler, K. (Hrsg.): Periodensystem. NiU-Chemie 1 (1990), Heft 5.

[2] Periodensystem der Elemente mit Fotografien. DIN A3, vierfarbig, Ernst-Klett-Verlag Stuttgart.

[3] Schmidkunz, H. (Hrsg.): Edition CyberMedia: Das Periodensystem der Elemente. Ein Informations- und Lernprogramm. Vieweg-Verlag, Wiesbaden 1995.

[4] Schmidkunz, D.: Das Periodensystem - Elemente für das Leben. NiU-Chemie 1 (1990), Heft 5.

[5] Lutz, B.: Wege zur Einführung des Periodensystems. NiU-Chemie 1 (1990), Heft 5.

Prof. Dr. Heinz Schmidkunz, geb. 1929 Universitätsprofessor für Chemiedidaktik in Dortmund. Adresse: Obermarkstr. 125, 44267 Dortmund.

Anschrift des Mitautors:

Dr. Sjaeful Anwar

Jurusan Kimia, FPMIPA-IKIP Bandung, 11. Dr. Setiabudi 229

Bandung 40233, Indonesien.